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We study spatial patterns excited by resonant, multifrequency forcing of systems near a Hopf bifurcation to
spatially homogeneous oscillations. Our third-order, weakly nonlinear analysis shows that for small amplitudes
only stripe patterns or hexagons �up and down� are linearly stable; for larger amplitudes rectangles and
super-hexagons may become stable. Numerical simulations show, however, that in the latter regime the third-
order analysis is insufficient: superhexagons are unstable. Instead large-amplitude hexagons can arise and be
bistable with the weakly nonlinear hexagons.
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The variety of patterns and planforms that have been ob-
served in surface waves on vertically vibrated fluid surfaces
�Faraday waves� is remarkable �1�. As elucidated in various
theoretical investigations �2� this extreme variability is a re-
sult of the fact that the wave form of the vibration’s forcing
function allows for a detailed tuning of various aspects of the
interaction between different plane-wave modes, which can
stabilize complex patterns like superlattice patterns and qua-
sipatterns. Motivated by this richness of patterns we are in-
vestigating here the effect of time-periodic forcing with dif-
ferent wave forms on systems undergoing a Hopf bifurcation
to spatially homogeneous oscillations.

In order to describe a forced Hopf bifurcation within a
weakly nonlinear framework the forcing must be sufficiently
weak. It nevertheless has a particularly strong effect on the
system if it includes frequencies that are close to one or more
of the low-order resonances of the system, i.e., if its spec-
trum contains frequencies close to the Hopf frequency �h
itself �1:1-forcing�, close to 2�h �2:1-forcing�, or close to
3�h �3:1-forcing� �3�. These strong resonances lead to addi-
tional terms in the weakly nonlinear description and qualita-
tively affect the system �4�. To wit, in the weakly nonlinear
regime the complex oscillation amplitude A satisfies a com-
plex Ginzburg-Landau equation of the form

dA

dt
= �� + i��A + �1 + i���A − �1 + i��A�A�2 + �Ā + 	Ā2 + 
 .

�1�

Note that � can be chosen real without loss of generality as
the argument � of � can be absorbed into A through a trans-

formation A→Aei�/2. The forcing terms 
, �Ā, and 	Ā2 rep-
resent the effect of forcing the system at the frequencies �,
2�, and 3�, respectively, with �=�h+ �

2 . The forcing is as-
sumed to be small with �=O���=O�	2�=O�
2/3�. The pa-
rameter � expresses the distance from the Hopf bifurcation,
which is shifted by a term of O��	�2� compared to the un-
forced case. Here we will focus on 
=0. To include the forc-
ing near the 1:1-resonance one can eliminate the inhomoge-
neous term 
 by using the fixed-point solution A0, which

satisfies 
=−��+ i��A0+ �1+ i��A0�A0�2−�Ā0−	Ā0
2, instead

of 
 as a control parameter �5�. This shift introduces the
additional nonlinear terms A2 and �A�2.

As is apparent from Eq. �1�, the forced Hopf bifurcation is
described by an equation that is very similar to a two-
component reaction-diffusion equation. The only and signifi-
cant difference is the term involving � which characterizes
the dispersion of unforced traveling wave solutions, which
would be absent in the reaction-diffusion context. It plays,
however, an essential role in exciting patterns with a charac-
teristic wave number �6� and cannot be omitted. Pattern se-
lection in a general two-component reaction-diffusion system
has been studied in detail by Judd and Silber �7�, who find
that in principle not only stripe and hexagon patterns can be
stable in such systems, but also supersquare and superhexa-
gon patterns. They show that despite the large number of
parameters characterizing these systems surprisingly few,
very special combinations of the parameters enter the equa-
tions determining the pattern selection.

Amplitude equations. In this Brief Report we will stay
below the Hopf bifurcation taking ��0. Thus, as in Faraday
systems, in the absence of forcing, no oscillations arise. To
investigate the weakly nonlinear stable standing wave pat-
terns possible in Eq. �1� we derive amplitude equations for
spatially periodic planforms. The linear stability of the state
A=0 is easily obtained by splitting the equation and the am-
plitude A into real and imaginary parts �A�Ar+ iAi�. The
usual Fourier ansatz Ar,i
eikx yields then the neutral stability
curve �n�k� with the basic state being unstable for �
��n�k�. The minimum �c�k� of the neutral curve is found to
be at kc

2= ��+��� / �1+�2�, �c
2= ��−���2 / �1+�2�. Since �

�0, the condition kc
2�0 implies that spatial patterns arise

only if the detuning of the forcing relative to the Hopf fre-
quency is such that waves with nonzero k are closer to reso-
nance than homogeneous oscillations with k=0 �6�. A typical
neutral curve is illustrated in Fig. 1 for �=−1, �=4, �=3,
and 
=0. The weakly nonlinear analysis presented in this
Brief Report is valid for values of � near �c. The range of
validity is restricted by �n�k=0� where spatially homoge-
neous oscillations are excited by the forcing, which interacts
with the standing-wave modes with wave number kc.

To determine the stability of the various planforms we
first determine the amplitude equations for rectangle pat-
terns, which are comprised of two modes separated by an
angle � in Fourier space. We expand �Ar ,Ai� as

PHYSICAL REVIEW E 76, 057202 �2007�

1539-3755/2007/76�5�/057202�4� ©2007 The American Physical Society057202-1

http://dx.doi.org/10.1103/PhysRevE.76.057202


�Ar

Ai
� = � 	

j=1,�
Zj�T�eikj·r�v1

v2
� + c.c. + O��2� , �2�

where 0���1 and the complex amplitudes Z1�T� and Z��T�
depend on the slow time T=�2t. The wave vectors are given
by k1= �kc ,0� and k�= �kc cos��� ,kc sin����. We also expand
� as �=�c+�2�2. The eigenvector v= �v1 , v2�T is normal-
ized so that 
v
2=1.

The usual expansion leads to the amplitude equations for
�Z1 ,Z��,

dZ1

dT
= ��� − �c�Z1 − �b0�Z1�2 + b1����Z��2�Z1, �3�

dZ�

dT
= ��� − �c�Z� − �b1����Z1�2 + b0�Z��2�Z�. �4�

If �= n�
3 , n�Z, the quadratic nonlinearity induces a secular

term and the expansion has to include three modes rotated by
120° relative to each other. The parameters can be chosen
such that a single solvability condition arises at cubic order
�cf. Eq. �5� below, with Z4,5,6=0�.

More complex patterns can be described by combining
these two analyses. For example, a superhexagon pattern
comprised of two hexagon patterns �Z1 ,Z2 ,Z3� and
�Z4 ,Z5 ,Z6� that are rotated relative to each other by an angle
�SH is described by the amplitude equation

dZ1

dT
= ��� − �c�Z1 + �Z̄2Z̄3 − �b0�Z1�2 + b2��Z2�2 + �Z3�2��Z1

− 	
j=0

2

b1��SH + j
2�

3
��Z4+j�2Z1 �5�

and corresponding equations for Zj, j=2, . . . ,6.
The coefficients of the amplitude equations can be written

in a simple form, setting 	�	r+ i	i:

� =

1 + �2

���
, � =

2
1 + �2�a	r + 	i�

�
1 + a2
, �6�

b0 = 3� +
76

9
�, b2 = 6� + 10� + � , �7�

b1��� = 6� + 8f���� , �8�

with

� = 1 −
�

�
, � =

− ��� − ���
2�� + ���

�2, �9�

� = −
2�1 + �2�

a��� − ����2
1 + �2	i
2 −

�a + ��	i


1 + a2
�� , �10�

f��� =
3 + 16 cos4 �

�4 cos2 � − 1�2 . �11�

Here a=
1+�2+�.
Pattern selection. As shown by Judd and Silber �7� for

general two-component reaction-diffusion systems, at the
point of degeneracy at which the quadratic coefficient � van-
ishes not only stripe patterns but also hexagon or triangle
patterns can be stable. The conditions for hexagons �or tri-
angles� to be stable are

� � 0, − 2�/15 � � � − �/3. �12�

For ��−2� /15 the bifurcation to hexagons �triangles� is
supercritical, while it is subcritical otherwise. For ��−� /3,
the hexagons �triangles� are unstable to stripes. Whether
hexagon or triangle patterns are stable depends on higher-
order terms in the amplitude equations �8�, which are not
considered here.

Comparing conditions �12� with expressions �9� and �10�
shows that over a wide range of the system parameters � and
� stripe or hexagon patterns can be made stable by a suitable
choice of the forcing function. Specifically, Eq. �10� shows
that � is always negative at the degeneracy �=0 since ���
−����0, which follows from ��0 and the condition kc

2

�0. The surfaces �=−2� /15 and �=−� /3 are shown in
Fig. 2 for �=−1, �=−1, and �=0. These results do not de-
pend qualitatively on the choice of � and � as long as �
�0 and kc

2�0. For experiments on the Belousov-
Zhabotinsky reaction values for � and � have been reported
near the point marked by the vertical line ��
=0.2, �=−1.4� �9�. Thus forcing should provide a robust
mechanism to induce transitions from stripes to supercritical
and subcritical hexagons. A distinguishing feature of these
hexagon patterns is that both “up” and “down” hexagons are
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FIG. 1. Neutral stability curve for Eq. �1� with �=−1, �=3, �
=4, and 
=0, resulting in kc=
11/10 and �c=7/
10.
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FIG. 2. �Color online� Surfaces �=−2� /15 and �=−� /3 for
�=0, marking the boundaries of stability between supercritical
stripes, supercritical hexagons, and subcritical hexagons, for system
parameters � and � with �=−1 and �=−1.
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simultaneously stable and are likely to form competing do-
mains. Figure 3 shows an example of the competition be-
tween “up” and “down” hexagons in a numerical simulation
of Eq. �1�.

Unfolding the degeneracy, i.e., taking 0� ����1, the
transition to hexagons becomes transcritical and hexagons
are stable to stripes for a � range given by

�c −
�2

4��b0 + 2b2�
� � � �c +

�2�2b0 + b2�
��b2 − b0�2 � �HS.

�13�

Note that �HS��c, even if Eqs. �12� are not satisfied, since
stripes do not exist for ���c. The instability of hexagons at
�HS only arises if b2�b0, that is, if 3�+14� /9+��0. With
��0 the up-down symmetry of the hexagon amplitude
equations is broken and either up or down hexagons are pre-
ferred.

Turning to other planforms, Judd and Silber found that
rectangular planforms cannot be stable at or near the degen-
eracy point �7�. Interestingly, however, they find that while
superhexagons cannot be stable at the degeneracy point, they
can arise in a very small parameter regime in its vicinity if
the conditions

� � 0, − �/21 � � � �/3 �14�

are met. They then can be bistable with hexagons. We find
that in our system this is not the case within the cubic trun-
cation �5�. Equation �10� shows that—for small ��� —� can
be made positive only by making 	i small as well �	i

=O����. Even then � can only be slightly positive, �
=O���, requiring that �=O��� in order to satisfy the second
condition in Eq. �14�. Under these conditions all cubic coef-
ficients in Eqs. �7� and �8� would become of O��� and with-
out knowledge of the next-order coefficients no stability pre-
dictions can be made.

Often weakly nonlinear analysis gives qualitatively useful
information beyond its formal regime of validity. We there-
fore also consider the case �=O�1�. Considering superhexa-
gons it should be noted that for �=O�1� the inequalities �14�
are not the correct stability conditions, since they were de-
rived assuming 0���1 and so ignore the angle depen-
dence of the cubic coefficients, which is O���. We use Eq.
�14� therefore only as a guide to locate parameter regimes in
which superhexagons may be expected to be stable and then
determine the eigenvalues that govern their stability directly
from the linearization of Eq. �5� about the equal-amplitude

solution �Zj�= �Z�, j=1, . . . ,6. One parameter set for which all
superhexagon eigenvalues are negative, suggesting that su-
perhexagons are stable, is given by the linear parameters
used in Fig. 1 with �=−1 and 	=
2ei�/4.

Using direct numerical simulations of the forced complex
Ginzburg-Landau Eq. �1� we have studied to what extent the
predictions of the weakly nonlinear analysis are borne out. In
the degenerate case �=0, enforced by setting 	i=−a	r, we
find, as predicted, either stripes or hexagons to be stable
depending on the values of � and �	�. To test the stability
boundary �=−� /3 in Eq. �12� we vary the 1:3 forcing
strength �	� with the remaining parameters in Eq. �1� fixed at
�=2.25 and �=0 and the linear parameters as given for Fig.
1 and start the simulations with random initial conditions.
The simulations agree with the weakly nonlinear prediction
to within 5%. Figure 3 shows a typical hexagonal pattern
obtained from random initial conditions exhibiting compet-
ing domains of up and down hexagons.

The stability limit �=−2� /15 in Eq. �12� marks the point
at which the pitchfork bifurcation to hexagons becomes sub-
critical. Extracting the cubic coefficient b0+2b2 from tran-
sient hexagon patterns �cf. Fig. 5 below� for varying values
of �	� with all other parameters as well as �=0 fixed we find
agreement between the weakly nonlinear result and the simu-
lations to within 1%. Figure 4 presents a bifurcation diagram
in the supercritical regime but close to the tricritical point ��
only slightly above −2� /15�. While the weakly nonlinear
analysis agrees very well in the immediate vicinity of the
bifurcation point, the deviations become significant already
for values of � only 0.5% above �c. Most surprisingly, how-
ever, as � is further increased the small-amplitude hexagons
undergo a saddle-node bifurcation and in the simulations the
solution jumps to large-amplitude hexagons. Both small- and
large-amplitude hexagons are simultaneously stable over a
range in �. With increasing �	� the saddle-node bifurcation at
which the large-amplitude hexagons come into existence is
shifted toward smaller values of ���c. We have not inves-
tigated to what extent the existence of the large-amplitude
hexagons depends on the parameters � and � of the unforced
system.

Away from the degeneracy, �=O�1�, the validity of the
weakly nonlinear analysis can be severely restricted by the
fact that the amplitudes of all stable branches are O�1�,
which formally suggests the significance of higher-order
terms in the expansion. Indeed, in and near the parameter
regimes for which the weakly nonlinear analysis predicts
stable superhexagon patterns we do not find any indication of

FIG. 3. Competing domains of up- and down-hexagon domains
obtained from random initial conditions with linear parameters as in
Fig. 1 and nonlinear parameters �=−1, 	r=0.4, and 	i=−0.4�
10
+3�. 	r and 	i chosen so that �=0.
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FIG. 4. Numerically obtained hexagon amplitudes for linear pa-
rameters as in Fig. 1 and nonlinear parameters �=0, 	i=2.38, and
	r=−2.38/ �
10+3�. 	r and 	i chosen so that �=0.
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their stability. To assess explicitly the significance of the
higher-order terms in the amplitude equations for �=O�1�
we extract them directly from numerical simulations of tran-
sients for the case of hexagon patterns. Figure 5 shows for
�=�c the numerically determined dependence of �Z�−2d�Z� /dt
on the hexagon amplitude �Z�= �Zj�, j=1,2 ,3. For very small
�Z� it agrees well with the weakly nonlinear result �− �b0

+2b2��Z�, which yields the straight dashed line. However,
even for �=�c the fixed point FP3 obtained from the hexagon
amplitude equations deviates from the numerically obtained
fixed point FPn by 30%. A fit of �Z�−2d�Z� /dt to a higher-order
polynomial shows that in the amplitude equation the magni-
tude of the quartic and quintic terms reach values of 15% and
of 20% of the cubic term, respectively. This supports our
interpretation that in this regime the cubic amplitude equa-
tion does not allow quantitative predictions.

In summary, we have investigated the regular spatial plan-
forms that can be stably excited in a system undergoing a
Hopf bifurcation by applying a periodic forcing function that
resonates with the second and third harmonic of the Hopf
frequency. We have done so within the weakly nonlinear

regime by deriving from the complex Ginzburg-Landau Eq.
�1� the appropriate amplitude equations describing the selec-
tion between various planforms. By tuning the phase of the
forcing close to 3�h one can always reach the point of de-
generacy at which no quadratic terms arise in the amplitude
equations, despite the quadratic interaction in the underlying
complex Ginzburg-Landau equation. Over a wide range of
the parameters of the unforced system, hexagon or stripe
patterns can be stabilized depending on the forcing function.
In the former case competing domains of up and down hexa-
gons are found in numerical simulations when starting from
random initial conditions. Hexagons can arise from either a
supercritical or subcritical pitchfork bifurcation, which we
have shown analytically and confirmed numerically. More-
over, numerical simulations have shown the existence of
hexagons with much larger amplitude, which can be bistable
with the supercritical hexagons.

Surprisingly, despite the extensive control afforded by the
two forcing terms, no square, rectangle, or superhexagon pat-
terns are stable in the vicinity of the degeneracy �=0, irre-
spective of the parameters of the unforced system. While in
the regime in which hexagons arise in a strongly transcritical
bifurcation the weakly nonlinear theory suggests the possi-
bility of stable superhexagons, direct numerical simulations
of the complex Ginzburg-Landau equation indicate no such
stability and we show that terms of higher order in the am-
plitudes are relevant.

By introducing a further forcing frequency, which is also
close to the 2:1-resonance, the transcritical bifurcation to
hexagons can be avoided. As we show in a separate paper,
the corresponding, more elaborate weakly nonlinear theory
correctly predicts stable quasipatterns comprised of four,
five, or more modes �10�.

For stronger forcing the spatially periodic standing waves
interact with a spatially homogeneous oscillation that is also
excited by the forcing. The interaction between these two
modes could lead to interesting patterns, which are, however,
beyond the scope of this paper.
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